Third International Conference "High Performance Computing”
HPC-UA 2013 (Ukraine, Kyiv, October 7-11, 2013)

b) ¢)

Figure 1. Decomposition of the whole flow duct into blocks (a): full case (b);
cyclical (¢)

1.4.2 Implicit finite volume approximation

To build conservative difference scheme, modified equations (7), (8) are expressed in the form of integral con-
servation laws for random volume V' and discretized. After linearization the discrete equations are written out
as

(B + Cz+1/2 B C 1/2T + CJ+1/2 T - C] 1/2T +
O T - O Ty | AT Q= RQ))
where T't is forward (4) or backward (—) shift operator along index m.

1.4.3 High-performance methods of solving the system of linearized equations

Approximate LU factorization method

To solve the system of equations (9) it is approximately LU factorized [1]:

- \p-1
(B ch 121 7C;'tl/2Tj 70;:71/2Tk) B™" x

(B +Cihypo T+ Cihy T C/?+1/2T+) ATIQ =R(Q"). (10)
System (10) is resolved in two steps. In the first one, A®T1/2Q are calculated in increasing index direction:
As+1/2Qijk _ B71 |:R(Qs) + C;l;l/2As+1/2Qi_ljk +

+ C;r_l/QASJrl/QQij—lk + C;_1/2A5+1/2Qijk—1:| . (11>

-30-

Third International Conference "High Performance Computing"
HPC-UA 2013 (Ukraine, Kyiv, October 7-11, 2013)

In the second step AT1Q is calculated in decreasing index direction:
ATIQujp = AT2Qy, — B! CZH/QASHQHuk +
T C;+1/2AS+1Qij+1k + C§+1/2As+1Qijk+l : (12)

In [1] auxiliary values A*+1/2Q;;;, and increments A®*1Q,;x in imaginary cells (behind the real boundaries of
computational domain) are considered equal to zero. Thus in [1] explicit boundary conditions are used.

Gauss-Seidel method

To find the exact solution of the system (9) let us use the other effective methods [3]. First one is the Gauss-
Seidel iteration method. In this method the solution of system AS*t1Q = AP+1Q is found out through iterations,
each consisting of two steps:

- - - 2
(B - 0;1/2Ti - C;~_71/2Tj - CZ—A/QTk >Ap+1/ Q+

+ (Ciﬂ/zTiJr + G T+ Ck+1/2le) APQ =R(Q%), (13)

- - - 1
<B +Ciiap T +Cry T + Ck+1/2TIj> APTIQ -

- (lemTi + C;F*I/QT{ + Cil/sz)NH/QQ =R(Q%), (14)

When [|APT1Q — APQ|| — 0 solution (13)-(14) appears to be the solution of equations set (9).
Intel MKL library’s methods

Typical dimension of system (9) in problems of hydraulic turbine flow simulation is ~ 10%. However, the matrix
is sparse: number of non-zero elements is about 0.001% of the number of all matrix elements. So for the exact
solution of (9), together with Gauss-Seidel method, FGMRES and PARDISO methods of Intel MKL library
were chosen, specially designed for sparse matrices.

Implicit implementation of boundary conditions

One more way to accelerate the convergence of iterations, when solving system of linear equations, is implicit
way of realization of boundary conditions. To do this initial system is extended, including additional equations,
approximating boundary conditions on all type of borders at computational domain [3].

1.5 Parallelization using decomposition

Taking into account the multi-block structure of the computational domain, mentioned in 1.3, the easiest way
of parallelizing computations is geometrical parallelization. Calculations of each iteration in every block of the
computational domain are done at the same time on different CPUs. After this, adjacent blocks exchange their
boundary values and iterations are repeated. Obviously, such an algorithm will provide good speedup only
if number of cells in all blocks is approximately equal. Communication between CPUs is implemented using
MPI. For exchanges between elements, blocking data transmissions were used. For exchanges between blocks
in frames of one turbine element, nonblocking messages were used. If two different blocks are computed on the
same processor core, no inter-core exchanges are done.

1.6 Numerical experiments
1.6.1 Influence of choosing the method for solving the system of equations

Draft tube steady flow simulations

Table 1 shows the comparison of different methods convergence speed for the computation of inviscid steady
flow in a draft tube.

Draft tube unsteady flow simulations

-31-

Third International Conference "High Performance Computing"
HPC-UA 2013 (Ukraine, Kyiv, October 7-11, 2013)

Table 1. Convergence speed for different solving method

Scheme Number of iterations required | CPU | Iteration | CPU time
for converging to 1073 time, s | speedup | slowdown
Approximate
LU factorization 658 13 1 1
Non-factorized
FGMRES ¢4 = 1076 383 398 1.72 30.6

Non-factorized
with explicit
boundary conditions 383 3841 1.72 295.46
PARDISO without iterations
Non-factorized
(Gauss-Seidel method) 383 92 1.72 7.08
iter = 30
Non-factorized
with implicit
boundary conditions 22 96 30 7.38
PARDISO &4, = 1076

When using non-factorized scheme with implicit boundary conditions the number of iterations significantly
decreases. Because simulation of unsteady flows requires rather small time steps, using non-factorized scheme
with implicit boundary conditions, as compared to the initial method, allows to significantly reduce total number
of iterations.

L 1 n L L L
10000 S

Figure 2. Typical pseudo-time convergence history within one time step: solid
line — approximate LU factorized scheme, dashed — non-factorized scheme with
implicit boundary conditions

To calculate 1000 time steps, non-factorized implicit boundary conditions scheme took 55 times less iterations
than approximate LU factorization scheme. However, to achieve this, solving the system with PARDISO
method, it took 3 times more CPU time. It should be noted that for the considered problem the convergence
of approximate LU factorization scheme slows down after residual reaches 10=% (Fig. 2). At the same time,
there are no such effects when using non-factorized scheme with implicit boundary conditions. Thus using non-
factorized scheme with implicit boundary conditions in high-precision calculations may significantly decrease
number of iterations. Though using the exact inversion of the matrix as compared to factorized methods requires
80 times more processor time. Therefore for considerable reduction of CPU time, the time for matrix inversion
has to be reduced.

1.6.2 Parallelization based on domain decomposition

Hydraulic turbine flow simulations were done using the following multiprocessor systems with different archi-
tecture:

-32-

Third International Conference "High Performance Computing"
HPC-UA 2013 (Ukraine, Kyiv, October 7-11, 2013)

1) NSU cluster: 512 cores; 64 nodes; 128 Intel Xeon processors (2.6 GHz Quad-core, 8 MB cache); RAM 16
GB per 1 node; InfiniBand network. Intel Fortran 10.0 compiler.

2) NKS-160 cluster (ICM&MG): 168 cores; 84 Itanium processors (1.6 GHz, 3 MB cache); RAM 4 GB per
1 node; InfiniBand network. Intel Fortran 10.0 compiler.

3) PC: 4 cores; 1 Intel Core2 Quad 9400 processor (2.66 GHz, 6 MB cache), RAM 3 GB, Gigabit Ethernet.
Intel Fortran 11.0 compiler.

Table 2. Number of mesh cells in computational domain of flow channel

Guide | Runner | Diffuser | Draft | Whole flow
vane tube channel
Nubmer of blocks 20 16 4 3 43
Number of cells in block | 11 191 15 162 25 872 | 15 150
Total number of cells 223 820 | 242 592 | 103 408 | 55 451 625 351

in all blocks

Hydraulic turbine flow channel included wicket gate, runner, draft tube cone (diffuser) and the draft tube
itself. Wicket gate had 20 guide vanes, and the runner had 16 blades. In table 2 number of blocks in every
turbine element and number of cells in every block are shown. In frames of the adopted paralleling approach
maximal number of processors used for flow computation in one turbine element (wicket gate, runner, diffuser
or draft tube) cannot exceed the number of blocks this element composed of.

First, the flow in isolated guide vane was simulated using different number of processors (1, 2, 3, 4, 5, 10,
20). Results of simulations are shown in table 3. For better comparison, theoretical speedup S g is also
shown. From table 3 we can see that using 4 processors on NSU cluster gives the best speedup, which even
grants super-linear speedup. This result is explained by ”cache effect”, when computational domain mesh fits
in processor’s cache memory.

Whole turbine flow was simulated on 1, 4, 11 and 41 processors, because for best speedup number of mesh
cells on every processor, should be proportional. Table 4 shows speedup results in comparison to theoretical
speedup.

2 Inverse turbine hydrodynamics problem

Let the V* be the vector of required flow parameters for given operating points of the turbine. Then, inverse
turbine hydrodynamics problem can be written as

r=fHV*). (15)

Problem (15) is also called the design problem. Methods of solving the design problem can be divided in two
classes: direct and optimization design. This work considers numerical methods of optimization design.

Table 3. Results of speeding up flow simulations in Table 4. Results of
wicket gate, using multiprocessor systems speeding up flow simu-
lations in a whole hy-
R S draulic turbine on NSU
Sr,r | NSU | NCS-160 | PC Intel Quad cluster

1 1 1 1 1

2 2 1.99 1.94 1.88 R S

3 3 | 2.46 2.44 2.46 Sr,r | NSU

4 4 4.08 2.62 3.20 1 1 1

5 5 4.3 2.81 - 4 2.6

10 10 6.3 5.9 - 11 11 6.2

20| 20 9.7 - - 41 | 41 15

-33-

Third International Conference "High Performance Computing"
HPC-UA 2013 (Ukraine, Kyiv, October 7-11, 2013)

2.1 Optimization design methods

Let the space X consist of geomerties (1), obtained by varying values of x1,...,2x. Then the optimization
design problem can be stated as problem of finding geometry

x=(21,...,2n) € X,
which provides
min F (x), ..., min Fi/(x),
xeX xeX

where
(Fi,...,Fpy)=F=V* — f(x).

2.2 Solution method for optimization problem

Global functional minimum is searched out using genetic algorithm [1]. Process of optimal Pareto front searching
consists of considering huge amount of geometry variants x. For each of them 3D CFD analysis is performed,
then objective functionals are calculated. Then next approximation to Pareto front is formed (see [1] for the
details).

2.3 Hydraulic turbine performance criteria
2.3.1 Effectiveness

Hydraulic turbine effectiveness criteria means reaching the highest possible coefficients of effectiveness 7 values
on given operating points. Therefore objective functional, which minimum will be equal to criteria fulfillment,
is

2.3.2 Criterion for minimization of dynamic influence of helical vortex rope

A criterion for minimization of helical vortex rope dynamic influence consists in providing minimal intensity
of it’s precession, resulting in decreasing the amplitude of pressure pulsations, affecting hydraulic turbine and
power plant construction. If one can calculate the amplitude A(x) of pressure pulsations for a given geometry
variant x, that would be the perfect way to formulate the corresponding criterion. Then the minimized objective
functional could have been

But nowadays, this approach is impossible because of necessity to simulate unsteady flow for direct evaluation
of A(x). Thus enormous time costs are needed to run these simulations for each geometry of each generation of
the genetic algorithm. In present work we used another approach that considers indirect criteria for minimization
of helical vortex rope influence. It requires axial component of velocity profile to have monotone growth up to the
runner hub. It is obtained by minimizing in plane C, — r the angle of inclination between linear approximation
of this profile and axis Or. Linearization of profile C,(x,r) means approximation it with a linear function

CL(x,r) = al + blr,

coefficients a' and ' are found from condition

D/2

. 2

(rlrlnbrll /(C’Z(x,r)fCi(x,r)) dr |,
0

where r = D/2 is the radius of the daft tube inlet section.

Thus indirect criteria for minimization of pressure pulsation amplitude caused by helical vortex rope is the
minimization of functional
Fy(x) = arctan(b!).

-34-

Third International Conference "High Performance Computing"
HPC-UA 2013 (Ukraine, Kyiv, October 7-11, 2013)

2.4 Parallel realization of optimization algorithm

Optimization design problem solution requires simulating flow and CFD analysis for huge amount of geometries
x. Using multiprocessor computers is the only way of solving this problem. This work implements parallel
genetic algorithm using master-slave concept. One system processor is defined as master, and others are
slave. The master processor coordinates work and interaction of slave ones, it runs main procedures of genetic
algorithm. Slave processors evaluate objective functionals.

2.5 Parallel optimization algorithm effectiveness and speedup

Effectiveness of implemented parallel optimization algorithm was measured at ICM&MG SB RAS MVS-1000
with 64 DEC Alpha 21264 (667 MHz) processors. To estimate optimization time speedup, one generation of
60 runner geometries was calculated. Figures 3-4 show the achieved dependencies from processors number.
Also theoretical speedup and effectiveness are shown. As can be seen, using up to 6 processors grants more
than 90% effectiveness of parallel algorithm. And using up to 20 processors allows effectiveness to stay above
80%. Efficiency drop-down with 8, 9 and 25 processors is explained with uneven distribution of 60 individuals
of the generation among the processors. It should be pointed out that decreasing parallel effectiveness mainly
depends on uneven processor load, which appears as a result of different time needed to obtain steady solution
in flow simulation. Initial data used for each hydrodynamics simulation are taken from the last geometry flow
simulation. So computation time is not fixed and may significantly reduce for similar geometries.

09k ¥,

08F WY~

0.7F Ty

0.6
0.5F
E,05¢
0.4
0.3
0.2

0.1

Figure 4. Theoretical Ef g (— - — - —)
and achieved Fr (—V¥—) calculation ef-
fectiveness

Figure 3. Theoretical S; g (—) and
achieved S (—M—) calculation speedup

References

[1] S.G. Cherny, D.V. Chirkov, V.N. Lapin, V. A. Skorospelov and S.V. Sharov: Numerical simulation of
fluid flows in turbomachines, 2006, Nauka, Novosibirsk (in Russian), 202 p.

[2] Y.S. Chen, S. W. Kim: Computation of Turbulent Flows Using an Extended k-¢ Turbulence Closure Model.
NASA CR-179204, 1987.

[3] I.F. Eshkunova, S.G. Cherny, D.V. Chirkov: Convergence Acceleration for Solution of Unsteady Incom-
pressible Fluid Dynamics Problems // Computational technologies, 16(5): 30-49, 2011.

-35-

